
Quiz 02 - Practice

COMP 110: Introduction to Programming
Spring 2024

Thursday March 7, 2024

Name:

9-digit PID:

Do not begin until given permission.

Honor Code: I have neither given nor received any unauthorized aid on this quiz.

Signed:

Question 1: Multiple Choice Completely fill in the bubble next to your answer using a pencil. Each
question should have exactly one filled-in bubble.

1.1. A variable’s value should not be reassigned
after initialization.

⃝ True

False

1.2. The first time a variable is bound to a
value is referred to with which of the fol-
lowing special names?

⃝ Assignment
Initialization

⃝ Relative Reassignment
⃝ Declaration

1.3. Which side of the following statement
should be evaluated first?

1 x = y

⃝ x

y

1.4. The following two statements are equiva-
lent to one another and interchangeable:

1 x = y
2 y = x

False

⃝ True

1.5. The following statement increments x’s
value by 1.

1 x + 1 = x

False

⃝ True

1.6. The following statement increments x’s
value by 1.

1 x += 1

⃝ False

True

1.7. Tuples and lists can both be mutated after
creation.

False

⃝ True

1.8. When accessing an index of a list that
does not exist, what kind of error is en-
countered?

⃝ NameError
⃝ KeyError

IndexError
⃝ StackOverflowError

1.9. When accessing an element of a list, what
kind of value most generically describes
what is found inside the subscription nota-
tion’s square brackets. E.g. a_list[HERE]

⃝ Integer Literal
⃝ Data Type

Integer Expression
⃝ Integer Variable Name

1.10. Generally, to avoid an infinite while loop,
each iteration of the loop body should
change a variable involved in the while
loop’s test condition bringing it closer to
False:

⃝ False
True

1.11. Consider a function named f with a while
loop. In the while loop’s body, there is
a return statement. At most, how many
times will this return statement be evalu-
ated in a single function call to f?

1
⃝ As many times as the loop iter-

ates
⃝ Infinite

1.12. Which of the following describes a test
written to demonstrate an expected usage
of a function?

⃝ Edge Case
Use Case

1.13. What is the evaluation of the following
expression:

1 [10, 20, 30][[0 , 1, 2][3 - 1]]

⃝ 10
⃝ 20

30
⃝ IndexError

Page 1

Question 2: Respond to the following questions

Consider the following code listing:

1 animals: list[str] = ["fox", "bear", "rabbit"]
2 ints: list[str] = [1, 1, 1, 1]
3 two_d: list[list[int]] = [[10, 20], [30, 40], [50, 60]]

2.1. Write an expression that evaluates to "bear", making use of the animals variable.

Solution: animals[1]

2.2. Write a method call that adds the value "mouse" to the animals list.

Solution: animals.append("mouse")

2.3. Write a function call expression that evaluates to the quantity of values in the animal list.

Solution: len(animals)

2.4. Write an expression that increments the 3rd value in ints to be one greater than its previous
value (regardless of what the previous value was).

Solution: ints[2] = ints[2] + 1 or ints[2] += 1

2.5. Write a sequence of 3 assignment statements that will swap the values of the 0 and 1 index in
animals. You will need to declare and initialize a temporary variable.

Solution:
temp: int = animals[1]
animals[1] = animals[0]
animals[0] = temp

2.6. Write an expression that accesses the value 40 stored in the two_d variable.

Solution: two_d[1][1]

2.7. Write an expression that accesses the list [50, 60] stored in the two_d variable.

Solution: two_d[2]

2.8. Write an expression that removes the item at index 1 from animals.

Solution: animals.pop(1)

Page 2

Mobile User

Question 3: Memory Diagram Trace a memory diagram of the following code listing.

1 def mutator(x: int , xs: list[int]) -> None:
2 """An impure function ... """
3 x += 1
4 xs[0] += 1
5 y: int = x + 1
6 print(f"mutator x: {x}, xs: {xs}, y: {y}")
7 return x
8
9 x: int = 0

10 xs: list[int] = [0]
11 y: int = 0
12 print(f"global before x: {x}, xs: {xs}, y: {y}")
13 y = mutator(x, xs)
14 print(f"global after x: {x}, xs: {xs}, y: {y}")

Output

Solution: global before x: 0, xs: [0], y: 0
mutator x: 1, xs: [1], y: 2
global after x: 0, xs: [1], y: 1

Stack
Globals

Heap

Page 3

Mobile User

Question 4: Memory Diagram Trace a memory diagram of the following code listing.
1 def combine(xs: list[int], ys: list[int]) -> list[int]:
2 """ Add the items of two lists item -wise."""
3 assert len(xs) == len(ys)
4 idx: int = 0
5 result: list[int] = []
6 while idx < len(xs):
7 result.append(xs[idx] + ys[idx])
8 idx += 1
9 return result

10
11
12 odds: list[int] = [1, 3, 5]
13 evens: list[int] = [2, 4, 6]
14 totals: list[int] = combine(odds , evens)
15 print(totals)

Output

Solution: [3, 7, 11]

Stack
Globals

Heap

Page 4

Mobile User

Question 5: Memory Diagram Trace a memory diagram of the following code listing.
1 def sort(xs: list[int]) -> None:
2 """ Sort with the insertion sort algorithm."""
3 N: int = len(xs) # Number of items
4 i: int = 1 # "current index"
5 x: int # "current value"
6 si: int # "shift index" searching backward
7
8 while i < N:
9 print(xs)

10 x = xs[i] # store current value
11 si = i
12 while si > 0 and x < xs[si - 1]:
13 xs[si] = xs[si - 1] # shift greater value forward one
14 si -= 1
15 xs[si] = x # *insert* (assign) "current value" in correct position
16 i += 1
17
18
19 values: list[int] = [40, 10, 30, 20]
20 sort(values)
21 print(values)

Output

Solution: [40, 10, 30, 20]
[10, 40, 30, 20]
[10, 30, 40, 20]
[10, 20, 30, 40]

Stack
Globals

Heap

Page 5

Mobile User

Question 6: Memory Diagram Trace a memory diagram of the following code listing and
then answer the sub-questions. You do not need to diagram the sub-questions.

1 def sum2d(xs: list[list[int]]) -> int:
2 """ Calculate the sum of a 2-dimensional list of lists."""
3 total: int = 0
4 row_i: int = 0
5 while row_i < len(xs):
6 col_i: int = 0
7 while col_i < len(xs[row_i]):
8 total += xs[row_i][col_i]
9 col_i += 1

10 row_i += 1
11 return total
12
13
14 values: list[list[int]] = [
15 [1, 2, 3],
16 [3, 4, 5],
17 [7, 8, 9]
18]
19 print(sum2d(values))

Output

Solution: 42

Stack
Globals

Heap

Page 6

Mobile User

Question 7: Memory Diagram Trace a memory diagram of the following code listing.
1 def mul_table(height: int , width: int) -> list[list[int]]:
2 """ Generate a multiplication table."""
3 rows: list[list[int]] = []
4 row_i: int = 1
5 while row_i <= height:
6 col_i: int = 1
7 row: list[int] = []
8 while col_i <= width:
9 row.append(row_i * col_i)

10 col_i += 1
11 rows.append(row)
12 row_i += 1
13 return rows
14
15 print(mul_table (3, 3))

Output

Solution: [[1, 2, 3], [2, 4, 6], [3, 6, 9]]

Stack
Globals

Heap

Page 7

Mobile User

Question 8: Function Writing Write a function definition for reverse with the following
expectations:

• The reverse function should accept a list[str] parameter and return a list[str].
• The returned list should have every item of the parameter list in reversed order, such

that the first value of the returned list was the last value of the input list, the second
value of the returned list was the second to last value of the input list, and so on.

• The function must not mutate its parameter.
• The function must not use the copy, reverse, or insert methods of list.
• You should explicitly type all variables, parameters, and return types.

8.1. Write your function definition for reverse here.

Solution: One possible solution, of many possible valid solutions:
1 def reverse(xs: list[str]) -> list[str]:
2 """ Reverse elements of input list without mutation."""
3 reversed: list[str] = []
4 idx: int = len(xs) - 1
5 while idx >= 0:
6 reversed.append(xs[idx])
7 idx -= 1
8 return reversed
9

8.2. Write a test function for a use case that demonstrates expected usage with at least three
values in the list.

Solution: One possible test function, of many possible valid test functions:
1 def test_reverse_3 () -> None:
2 """ Test reversal of three element list."""
3 assert reverse (["one", "two", "three"]) == ["three", "two", "one"]
4

Page 8

Question 9: Function Writing Write a function definition for flip_flop with the following
expectations:

• The flip_flop function should accept a list[str] parameter and return None.
• The function must mutate its parameter such that pairs of subsequent indices are

swapped. For example, index 0’s value should be swapped with index 1’s value. Index
2’s value should be swapped with index 3’s value, and so on. If there are an odd number
of indices, leave the final element in its place.

• You should explicitly type all variables, parameters, and return types.

9.1. Write your function definition for flip_flop here.

Solution: One possible solution, of many possible valid solutions:
1 def flip_flop(strs: list[str]) -> None:
2 idx: int = 1
3 while idx < len(strs):
4 temp: str = strs[idx]
5 strs[idx] = strs[idx - 1]
6 strs[idx - 1] = temp
7 idx += 2
8

9.2. Write a test function for a use case that demonstrates expected usage with at least three
values in the list.

Solution: One possible test function, of many possible valid test functions:
1 def test_flip_flop_5 () -> None:
2 """ Test flip flop with 5 elements """
3 letters: list[str] = ["a", "b", "c", "d", "e"]
4 flip_flop(letters)
5 assert letters == ["b", "a", "d", "c", "e"]
6

Page 9

This page intentionally left blank. Do not remove from quiz packet.

Page 10

