
Quiz 03 - Practice

COMP 110: Introduction to Programming
Spring 2024

Thursday April 11, 2024

Name:

9-digit PID:

Do not begin until given permission.

Honor Code: I have neither given nor received any unauthorized aid on this quiz.

Signed:



Question 1: Multiple Choice For each of the next questions, select all of set, list, dict, and/or
tuple for which the statement describes. Bubble in ALL squares that apply.

1.1. Which of the following data structures are
sequences?
■ tuple ■ list □ set □ dict

1.2. Select all data structures that are mutable.
□ tuple ■ list ■ set ■ dict

1.3. Select all data structures that can contain
duplicate elements.
■ tuple ■ list □ set ■ dict

1.4. Which of these data structures use key-
value pairs for storing data?
□ tuple □ list □ set ■ dict

1.5. Which of the following data structures
does not guarantee the order of elements?
(The dict data structure is intentionally
omitted; in Python, order is maintained.
However, generally, dict-like data struc-
tures do not guarantee ordering.)
□ tuple □ list ■ set

1.6. Which data structures allow indexing via
subscription notation to access individual
elements directly?
■ tuple ■ list □ set ■ dict

1.7. If you need to store a collection of items
and frequently check whether an item is
in the collection, which data structure is
most efficient?
□ tuple □ list ■ set □ dict

1.8. To ensure the order of elements is main-
tained and allow for duplicates, which
data structure would you choose?
□ tuple ■ list □ set □ dict

1.9. For a fixed collection of elements that
should not be altered, which data struc-
ture is the most appropriate?
■ tuple □ list □ set □ dict

1.10. To store a sequence of elements that you
intend to iterate over and modify, which
data structure offers the best perfor-
mance?
□ tuple ■ list □ set □ dict

1.11. For associating student PIDs to their re-
spective email addresses, which data struc-
ture provides the most efficient lookup?
□ tuple □ list □ set ■ dict

1.12. Which of the following could use use as a
key type in a dict? (Hint: keys must be
immutable)
■ tuple □ list □ set □ dict

1.13. Which data structure’s literal syntax is
enclosed within parentheses?
■ tuple □ list □ set □ dict

1.14. Which data structure’s literal syntax is
enclosed within curly braces?
□ tuple □ list ■ set ■ dict

1.15. Which data structure’s literal syntax is
enclosed within square brackets?
□ tuple ■ list □ set □ dict

1.16. Which data structures can you iterate over
using a for..in loop?
■ tuple ■ list ■ set ■ dict

1.17. Which data structures allow the use of the
len function to determine the number of
elements it contains?
■ tuple ■ list ■ set ■ dict

1.18. Which of the following data structures is
best when you want to find the intersec-
tion, union, or difference of two collections
of values?
□ tuple □ list ■ set □ dict

1.19. If you were creating a messaging app,
where you want to maintain a list of mes-
sages in the order they were received,
which data structure would you use?
□ tuple ■ list □ set □ dict

1.20. When trying to count the frequency of
words in a document, which data structure
would allow you to efficiently store and
update counts?
□ tuple □ list □ set ■ dict

Page 1

Mobile User



Question 2: Respond to the following questions

Consider the following function signatures:

1 def a(x: float , y: float) -> float: ...
2 def b(a: str) -> int: ...
3 def c(x: int) -> bool: ...

2.1. What is the Callable type of a?

Solution: Callable[[float, float], float]

2.2. What is the Callable type of b?

Solution: Callable[[str], int]

2.3. What is the Callable type of c?

Solution: Callable[[int], bool]

Question 3: Respond to the following questions

Consider the following generic Callable type aliases and function signatures:

1 Transform = Callable [[T], U]
2 Predicate = Callable [[T], bool]
3 BinaryFunc = Callable [[T, U], V]
4
5 def f(x: int) -> bool: ...
6 def g(x: int) -> double: ...
7 def h(x: float , y: float) -> float: ...
8 def a(x: str , y: int) -> bool: ...
9

10 def hof(t: Transform[int , double ]) -> bool: ...

3.1. Which of the function names conform to the Transform type?

Solution: f, g

3.2. Which of the function names conform to the Predicate type?

Solution: f

3.3. Which of the function names conform to the BinaryFunc type?

Solution: h, a

3.4. Given the function signatures defined above, write a function call to the ‘hof‘ function:

Solution: hof(g)

Page 2



Question 4: Respond to the following questions using Python’s builtin filter and map functions.

Consider the following functions:

1 def a(x: float) -> bool:
2 return x >= 0.0
3
4 def b(x: bool) -> bool:
5 return not x
6
7 def c(x: float) -> str:
8 return f"-> {x} <-"
9

10 def d(x: str) -> float:
11 return float(x)

4.1. What is the evaluation of list(map(a, [1.0, 0.0, -1.0, 2.0])) in list literal notation?

Solution: [True, True, False, True]

4.2. What is the evaluation of list(filter(a, [1.0, 0.0, -1.0, 2.0])) in list literal notation?

Solution: [1.0, 0.0, 2.0]

4.3. What is the evaluation of list(map(b, [True, False, True])) in list literal notation?

Solution: [False, True, False]

4.4. What is the evaluation of list(filter(b, [True, False, True])) in list literal notation?

Solution: [False]

4.5. What is the evaluation of list(map(c, [110.0, 210.0])) in list literal notation?

Solution: ["-> 110.0 <-", "-> 210.0 <-"]

4.6. What is the evaluation of list(map(d, ["110.0", "210.0"])) in list literal notation?

Solution: [110.0, 210.0]

4.7. What is the evaluation of list(filter(a, map(d, ["-100.0", "110.0"]))) as a list literal?

Solution: [110.0]

4.8. What is the evaluation of list(map(c, map(d, ["-100.0", "110.0"]))) as a list literal?

Solution: ["-> -100.0 <-", "-> 110.0 <-"]

Page 3



Question 5: Memory Diagram Trace a memory diagram of the following code listing. For the pur-
poses of diagramming, you can ignore the imports, TypeVars, and type aliases.

1 from typing import Callable , TypeVar
2
3 T = TypeVar("T")
4 U = TypeVar("U")
5 Transform = Callable [[T], U]
6
7
8 def compose(f: Transform[int ,float], g: Transform[float ,str], x: int) -> str:
9 f_rv: float = f(x)

10 return g(f_rv)
11
12
13 def a(x: float) -> str:
14 return f"x is {x}"
15
16
17 def b(x: int) -> float:
18 return x / 2.0
19
20
21 print(compose(b, a, 110))

Output

Solution: 55.0

Stack
Globals

Heap

Page 4

Mobile User



Question 6: Memory Diagram Trace a memory diagram of the following code listing. For
the purposes of diagramming, you can ignore the imports, TypeVars, and type aliases.

1 from typing import TypeVar , Callable
2 from collections.abc import Iterable
3
4 T = TypeVar("T")
5 Predicate = Callable [[T], bool]
6
7
8 def every(test: Predicate[T], xs: Iterable[T]) -> bool:
9 """A mysterious higher -order function ... """

10 for x in xs:
11 if not test(x):
12 return False
13 return True
14
15
16 def is_odd(x: int) -> bool:
17 return x % 2 == 1
18
19
20 nums: list[int] = [1, 3, 4]
21 print(every(is_odd , nums))

Output

Solution: False

Stack
Globals

Heap

Page 5

Mobile User



Question 7: Memory Diagram Trace a memory diagram of the following code listing. For
the purposes of diagramming, you can ignore the imports, TypeVars, and type aliases.

1 def count(xs: list[int]) -> dict[int , int]:
2 counts: dict[int , int] = {}
3 for x in xs:
4 if x in counts:
5 counts[x] += 1
6 else:
7 counts[x] = 1
8 return counts
9

10
11 numbers: list[int] = [1, 1, 0]
12 print(count(numbers))

Output

Solution: {1:2, 0:1}

Stack
Globals

Heap

Page 6

Mobile User



Question 8: Function Writing Write a function definition for any with the following expec-
tations:

• The any function should accept a Callable[[str], bool] "predicate" test function and
a list[str] as parameters. It should return a bool.

• The function should return True if any str item in the list parameter, when used as an
argument to call the callable predicate parameter, returns True. Otherwise, this function
should return false.

• You should explicitly type all variables, parameters, and return types.

8.1. Write your function definition for any here.

Solution: One possible solution, of many possible valid solutions:
1 def any(test: Callable [[str], bool], xs: list[str]) -> bool:
2 for x in xs:
3 if test(x):
4 return True
5 return False
6

8.2. Write a valid function that could be used with any and returns whether a given string is
greater than 3 characters long.

Solution: One possible test function, of many possible valid test functions:
1 def longerThan3(s: str) -> bool:
2 return len(s) > 3
3

8.3. Write an example function call to any making use of the function defined above and a
list of length 2 that will result in a False value being returned by any.

Solution: One possible call, of many possible valid calls:
1 any(longerThan3 , ["a", "bb", "ccc", "d"])
2

Page 7



Question 9: Function Writing Write a function definition for count_lens with the following
expectations:

• The count_lens function should accept a list of string values and return a dictionary
where the key type is int and the value type is int.

• The function should count the frequencies of strings in the parameter list of the same
length(s). For example, ["a", "b", "cc", "d"] should return {1: 3, 2: 1} because
there were three strings of length 1 and one string of length 2.

• You should explicitly type all variables, parameters, and return types.

9.1. Write your function definition for any here.

Solution: One possible solution, of many possible valid solutions:
1 def count_lens(strs: list[str]) -> dict[int , int]:
2 counts: dict[int , int] = {}
3 for s in strs:
4 if len(s) in counts:
5 counts[len(s)] += 1
6 else:
7 counts[len(s)] = 1
8 return counts
9

9.2. Write a test function for a use case that demonstrates expected usage with at least three
values in the list. Your input should be different from the prompt’s sample input.

Solution: One possible test function, of many possible valid test functions:
1 def test_count_lens () -> None:
2 """ Test flip flop with 5 elements """
3 letters: list[str] = [["a", "b", "cc", "dd"]
4 assert count_lens(letters) == {1: 2, 2: 2}

Page 8



This page intentionally left blank. Do not remove from quiz packet.

Page 9


