
2024/01/16

Types, Objects, and Functions,
Oh My!

COMP110 - CL01Today is a Paper + Pencil or Tablet + Pencil day...
please keep laptops stowed away!

Office Hours

• All O!ce Hours usage is through the Course.Care via the enroll code above

• To use o!ce hours:
1. Come to the Sitterson Lobby and take a seat in the open Lobby Area.
2. Open Course.Care and Create an Appointment Request. Put e!ort into the questions asked!
3. The TAs will call tickets 1-by-1, in-order. You will go into the drop-in meeting.
4. Meetings are 15-minutes long to ensure fairness to other students.
5. There is an hour-long wait between meetings and you are expected to make an hour of progress.

Why? Your success in this course depends on your individual understanding and mastery of the material!

Drop-in appointments queued via https://Course.Care - Enroll Code: 48A3A6

https://Course.Care

1. Review - Basic Types

1. What is the di"erence between int and float?

2. Is there a di"erence between "True" and True? What type of literal is each an
example of?

3. What is the di"erence between 1 + 1 and "1" + "1"? What is the resulting value
and type of each?

4. What role do types play for data in Python?

Jot down responses to these four questions and discuss with your neighbor.

2. Review - str is a Sequence Type

5. What does len function evaluate to when applied to a str value?
What will the expression len("owl") evaluate to?

6. Is there a di"erence between "True" and 'True'? What type of literal is each an
example of?

7. What are the square brackets called in the following expression? What does the
following expression evaluate to? "BEAR"[3]

8. Can a string be a number in Python? Explain.

Jot down responses to these four questions and discuss with your neighbor.

3. Review - Operators and Expressions

9. What is the result of evaluating 10 % 3? What about 10 !" 3? What about 10 #" 3?

10. Is there an error in the expression "CAMP" + 110? If so, how would you #x it such that
the + symbol is evaluated to be concatenation?

11. What is the evaluation of the expression 10 / 4? What types are the operands (10 and
4), what type does the expression evaluate to?

12. What is the evaluation of the expression 2 - 6 / 3 + 4 * 5?

Jot down responses to these four questions and discuss with your neighbor.

Functions by Intuition...

def celsius_to_fahrenheit(degrees: int) -> float:
"""Convert degree Celsius to degrees Fahrenheit."""
return (degrees * 9 / 5) + 32

Consider the following Function Definition, which is a new concept to you...

celsius_to_fahrenheit(degrees=0)

celsius_to_fahrenheit(degrees=10)

Now consider the following Function Call Expressions, which use the definition...

What value and type does each function call expression evaluate to? How many
connections between the definition and the call can you identify intuitively?

Functions and the Fundamental Pattern

Algorithm

celsius_to_fahrenheit

float
degrees:

int

celsius_to_fahrenheit(degrees=10)

10 50.0

50.0

A

B

C

D

F

Key for Notes
A. Function Definition Established

... later ...
B. Function Call Expression Evaluation Begins
C. Argument 10 given as input to degrees parameter
D. The celsius_to_fahrenheit "algorithm" evaluates
E. The function call returns a value of 50.0
F. Function Call Expression (B) results in a float value

of 50.0

E

Function Definitions are like Recipes
• A recipe in a book does not result in a meal until you cook it.

• A function de!nition in your program does result in a value until you call it.

• An adaptable recipe is one where you can substitute ingredients, follow the same
steps, and get di"erent, but intentional, results. Such as blueberry biscuits, cinnamon
biscuits, sage biscuits, and so on.

• A parameterized function de!nition is one where you can substitute input
arguments, follow the same steps, and get di"erent, but intentional, results. Such as
converting di"erent Celsius degree values to Fahrenheit degree values.

• Recipes and function de!nitions are written down once with dreams of being
cooked and called tens, hundreds, thousands, ... billions of times over!

The Anatomy of a Function Definition

def name_of_function(parameter: type) -> returnType:
"""Docstring description of function for people"""
return expression_of_type_returnType

This will be the CL01 in-class submission...

Function Definition Signature

def name_of_function(parameter: type) -> returnType:
"""Docstring description of function for people"""
return expression_of_type_returnType

The signature of a function de#nition speci#es how you and others will make use of the
function from elsewhere in a program:

What is its name?
What input parameter(s) type(s) does it need? (Think: ingredients...)
What type of return value will calling it result in? (Think: biscuits)

Function Definition Body or Implementation
def name_of_function(parameter: type) -> returnType:

"""Docstring description of function for people"""
return expression_of_type_returnType

The body or implementation a function de#nition speci#es the subprogram, or set of steps, which will
be carried out every time a function calls the de#nition:

Each statement in the body is indented by one-level to visually denote it.

The Docstring describes the purpose and, often, usage of a function for people

The function body then contains one-or-more statements. For now, our de#nitions will be simple,
one-statement functions.

Return statements are special and written inside of function de#nitions, when a function de#nition
is called, a return statement indicates "stop following this function right here and send my caller
the result of evaluating this return expression!"

Submitting CL01 to Gradescope for Participation

• Decide one of the two of you (or three...) to be the SUBMITTER

• From the SUBMITTER's cell phone:

1. Open CL01 on Gradescope and make a submission
2. Upload a wide angle sel#e-photo of your pair or group of 3 holding your anatomy of
a function notes and giving a cozy thumbs up
3. Make your submission, then add your partner(s) to your submission!!!

