
2024/02/06

elif, Constants , Heap IDs, and
more on Parameters

COMP110 - CL06
Today is a Paper + Pencil or Tablet + Pencil day...

please keep laptops stowed away!

Announcements

• EX02 Grade Calculator - Due Wednesday 2/14

• Office Hours Closed Saturday 2/10 through Tuesday 2/13 - Well-being

• QZ01 - Thursday 2/15

Warm-up: What is the printed output?

Warning: Illogical conditional
statements can lead to unreachable code

Notice the first if-then statement will be
processed for any value less than or equal
to 0.0, and in the else branch we test for
the same value equal to 0.0.

As written, no value for
degrees_fahrenheit will return
"REALLY Warm Jacket" being returned.
This is unreachable code.

What other return statements are
unreachable?

Rewrite the nested if-else statements to be
 more logical and easier to reason about.

Using the elif statement
The following two code snippets are semantically equivalent.

Warm-up Part 2: What is the printed output?

Named Constants

• Programs often involve constant values in computations and other places

• For example: π, e, SALES_TAX, GAME_TITLE, FOOT_IN_INCHES and so on

• Rather than sprinkling literal values for these constants in many places through a program, often
called "Magic Numbers", defining named constants is encouraged

• By convention, named constants are ALL_CAPITAL_LETTERS with multiple words separated by
underscores.

• For example:

• PI: float = 3.14159

• SALES_TAX: float = 0.07

• When defined at the global level the named constant is available throughout your Python module.
When defined inside a function, at a local level, the named constant is only defined in the function.

• Why? ... Name resolution rules!

Putting a Name to "Magical Values"

Tuple Concatenation

• (1,) + (2,) evaluates to (1, 2)

• () + (1, 2) evaluates to (1, 2)

• (1, 2) + (3,) evaluates to (1, 2, 3)

• (110,) + (101,) evaluates to (110, 101)

• The operand tuples remain unchanged, the resulting tuple is a new object.

Like string values, two tuples can be concatenated to form a new, larger tuple.

Diagram the following program

What are the diagrammed arrows, anyway?

• Every object in a running Python program has a
numerical identifier (id)

• The built-in id() function will tell you an object's id

• These id's are actually memory addresses
representing where in memory a particular value is
found. The details of memory addresses are
beyond our concerns, but it's worth noting!

• Notice these numbers are very large... trillions!

• Arrows are a simplification of id

Memory Addresses!

Moving Forward: Diagrams with Heap IDs

• Moving forward, when objects are added to the heap (eg. functions, tuples, and more
soon) number each item with a boxed Heap ID starting from 0 and counting up

• When referring to an object on the heap, rather than drawing an arrow, write: "id:0"

• When accessing or reading a name that holds a Heap ID, look up its value in the heap in
order to know what to do with it

Diagram the following program with Heap IDs
No arrows needed! Just record the Heap ID in the stack value as id:X where X is object's Heap ID.

Parameters and Arguments

Keyword Arguments

Positional Arguments

Default Parameters

Trace the Following Program with Heap IDs

