
2024/02/29

Testing

COMP110 - CL11Today starts as a Paper + Pencil or Tablet + Pencil 
day... please keep laptops stowed away!



Announcements

• EX03 - Wordle


• Due Tomorrow at 3/1 at 11:59pm


• EX04 - List Utility Functions


• Out by Sunday 3/3, Part 1 Due by 4/8, Part 2 Due by 4/19


• Quiz 2 - Thursday 3/7



Trace a Memory Diagram
Warm-up



Common, Useful Methods of the List Class
Feature Method Name Example

Append item to a List append a_list.append(item) - item is type T of with a_list: list[T]

Remove item from a List pop a_list.pop(index) - index is an integer

Copy a List copy a_list.copy()

Count Items in a List count a_list.count(item) - returns number of occurrences of `item`

Reverse a List reverse a_list.reverse() - mutates a_list, reversing its elements

Find Index of a Value index a_list.index(item) - returns the index of `item` in list, ValueError 
otherwise

Clear Items of a List clear a_list.clear() - clears all items from list, mutating the list



Test-driven Function Writing

• Before you implement a function, focus on concrete examples of how the function should 
behave as if it were already implemented.


• Key questions to ask:


1. What are some usual arguments and expected return values?


• These are your use cases or expected cases.


2. What are some valid but unusual arguments and expected return values?


• These are your edge cases.



Using Wishful Thinking



Big Idea: Functions can validate the correctness other functions!

•Testing at a function-level is generally called unit testing in industry (a unit of functionality)
A. Helps you confirm correctness during development
B. Helps you avoid accidentally breaking things that were previously working (regressions)

•The strategy:
1. Implement the "skeleton" of the function you are working on

Name, parameters, return type, and some dummy (wrong/naive!) return value
2. Think of examples use cases of the function and what you expect it to return in each case
3. Write a test function that makes the call(s) and compares expected return value with actual
4. Once you have a failing test case running, go correctly implement the function's body
5. Repeat steps #3 and #4 until your function meets specifications

•This gives you a framework for knowing your code is behaving as you expect

In software, this concept is called Testing



Testing is no substitute for critical thinking...

• Passing your own tests does not guarantee your function is correct!


• Your tests must validate a useful range of cases


• Rules of Thumb:


• Test >= 2 use cases and >= 1 edge case per function


• When a function has if-else statements, or loops, write one test per branch/body



Setting up a pytest Test Module

To test the definitions of a module, first create a sibling module with the same name, but ending in _test
Example name of definitions module: lecture.cl11_module
Example name of tests module: lecture.cl11_module_test
This convention is common to pytest

Then, In the test module, import the definitions you'd like to test

Next, add tests which are procedures whose names begin with test_
Example test name: test_total_empty

To run the test(s), two options:
In a new terminal: pytest [package_folder/python_module_test.py]
Use the Python Extension in VSCode's Tests Pane


