At I
LA

f s
S

Warm-up: Diagram the Following Program

xs: list[int] = [10, 20, 30]
1: 1int = 2
xs[i] = xs[i - 1]

print(xs)
1 =1-1
xs[i - 1] = xs[i]
print(xs)

Follow-on Questions:

1. Describe line with comment A in English

2. Describe line with comment B in English

Relative Reassignment Operators

'Trace aMemory Diagram

def triangle(n:

1: int =1

line: str

while 1 <= n:
line = "*"
while len(line) < 1i:

line += "'x"

print(line)
1 +=1

triangle(2)

Insertion Sort Algorithm Intuition

Current Value 1 is:

Goal: Move items in the list back to their
correctly sorted position one-by-one.

1. Start with Current Index i at index 1
2. Hold current index's value aside in Current Value x
3. Compare Current Value with the value before it, if exists

1. Current value less than previous? Copy/"shift" previous
value forward one index. Repeat until no more previous
values or previous value is at most current value.

2. Assign/ "Insert” Current Value to the last index that
was shifted forward. This is its correctly sorted
position up to the Current Index!

3. Add One to Current Index, Go to Step 2

4. Once current index >= len(list), done!

Current Value X is:
0

40

’I

10

2

30

20

50

Try it out!

Goal: Move items in the list back to their
correctly sorted position one-by-one.

1. Start with Current Index i at index 1
2. Hold current index's value aside in Current Value x
3. Compare Current Value with the value before it, if exists

1. Current value less than previous? Copy/"shift" previous
value forward one index. Repeat until no more previous
values or previous value is at most current value.

2. Assign/ "Insert” Current Value to the last index that
was shifted forward. This is its correctly sorted
position up to the Current Index!

3. Add One to Current Index, Go to Step 2

4. Once current index >= len(list), done!

Current Value 1 is:

Current Value X is:
0

50

’I

40

2

20

30

10

Tracing Insertion Sort

def sort(xs: list[int]) —> None:
""HSort with the insertion sort algo.
N: int = len(xs)
1: int =1
X: 1int
si: 1int
while 1 < N:
X = xs[il
s1 =1
while si > @ and x < xs[si - 1]:
xs[si] = xs[si - 1]
si —=1
Xs[si] = x
I S |
print(xs)

values: list[int] = [40, 10, 30]
sort(values)
print(values)

Diagramming Nested Lists

[1, 2]
[2, 4]
[3, 6]

+ list[int]
list[int]
list[int]

list[list[int]] = [row_0@, row_1, row_2]

mystery: = table[0]

print(row_2[1])
print(table[2])
print(table[2] [1])

Nested List Notes

Diagramming Nested Lists

def mul_table(height: int, width: int) -> list[list[int]]:
rows: list[list[int]] = []
row_1: int =1
while row_i <= height:
col_i: int =1
row: list[int] = []
while col 1 <= width:
row.append(row_i * col_i)
col 1 +=1
rows.append(row)
row_1 += 1
return rows

print(mul_table(3, 2))

def mul_table(height: int, width: int) —> list[list[int]]:
rows: list[list[int]] = T[]
row_i: int =1
while row_i <= height:
col_i: int =1
row: list[int] = []
while col_i <= width:
row.append(row_i * col_i)
coli +=1
rows.append(row)
row_i +=1
return rows

print(mul_table(3, 2))

